Cubic-Quartic Functional Equation

نویسندگان

  • M. Eshaghi Gordji
  • M. Rassias
  • Victor M. Perez Garcia
چکیده

and Applied Analysis 3 In 2008, Gordji et al. 17 provided the solution as well as the stability of a mixed type cubic-quartic functional equation. We only mention here the papers 19, 32, 33 concerning the stability of the mixed type functional equations. In this paper, we deal with the following general cubic-quartic functional equation: f ( x ky ) f ( x − ky) k2(f(x y) f(x − y)) 2 ( 1 − k2 ) f x k4 − k2 4 × (f(2y) − 8f(y)) ̃ f 2x − 16 ̃ f x , where ̃ f x : f x f −x . 1.7 Then it follows easily that the function f x ax4 bx3 satisfies 1.7 . We investigate the general solution and the generalized Hyers-Ulam-Rassias stability of the functional equation 1.7 . 2. General Solution In this section, we establish the general solution of functional equation 1.7 . Theorem 2.1. Let X, Y be vector spaces and let f : X → Y be a function. Then f satisfies 1.7 if and only if there exists a unique symmetric multiadditive function Q : X × X × X × X → Y and a unique function C : X ×X ×X → Y such that f x Q x, x, x, x C x, x, x for all x ∈ X, where the function C is symmetric for each fixed one variable and is additive for fixed two variables. Proof. Let f satisfies 1.7 . We decompose f into the even part and odd part by setting fe x 1 2 ( f x f −x ), fo x 12 ( f x − f −x ) 2.1 for all x ∈ X. By 1.7 , we have fe ( x ky ) fe ( x − ky) 1 2 [ f ( x ky ) f (−x − ky) f(x − ky) f(−x ky)] 1 2 [ f ( x ky ) f ( x − ky)] 1 2 [ f ( −x (−ky)) f( −x − (−ky))] 1 2 [ k2 ( f ( x y ) f ( x − y)) 2 ( 1 − k2 ) f x k4 − k2 4 ( f ( 2y ) − 8f(y)) ̃ f 2x − 16 ̃ f x ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic-quartic functional equations in fuzzy normed spaces

In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation

متن کامل

Intuitionistic fuzzy stability of a quadratic and quartic functional equation

In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.

متن کامل

Stability of generalized QCA-functional equation in P-Banach spaces

In  this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.

متن کامل

Stability of a Mixed Type Cubic and Quartic Functional Equation in non-Archimedean l-Fuzzy Normed Spaces

In this paper, we prove the generalized Hyres–Ulam–Rassias stability of the mixed type cubic and quartic functional equation f (x + 2y) + f (x − 2y) = 4(f (x + y) + f (x − y)) − 24f (y) − 6f (x) + 3f (2y) in non-Archimedean ℓ-fuzzy normed spaces.

متن کامل

Stability of a Functional Equation Deriving from Cubic and Quartic Functions

In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the cubic and quartic functional equation 4(f(3x + y) + f(3x− y)) = −12(f(x + y) + f(x− y)) + 12(f(2x + y) + f(2x− y))− 8f(y)− 192f(x) + f(2y) + 30f(2x).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014